
Silicon in Ornamental Crops: Detection, Delivery, and Function

Inclusion of Silicon (Si) in fertilizer solutions is not a typical management practice in floriculture crop production in the United States, in spite of the growing body of literature showing a clear, beneficial effect on plant growth for some species. We have evaluated Si uptake in 46 crops utilizing hydroponics with and without Si in the nutrient solution. Approximately 50% of the species tested so far had Si concentrations higher than 0.1% dry weight in the leaf tissue (Table 1).

Potential inputs of Si to the production cvcle were evaluated for Si content, including water, fertilizer, pesticides, and various inorganic and plant-based media amendments. Notable amounts of Si were found to be supplied to zinnia and sunflower when Si-containing plant materials were incorporated into the substrate compared to unamended but fertigated control plants. Supplemental Si alleviated stress due to copper toxicity in zinnia and also delayed the progression of powdery mildew on zinnia leaves by up to 3 weeks (Figure 1).

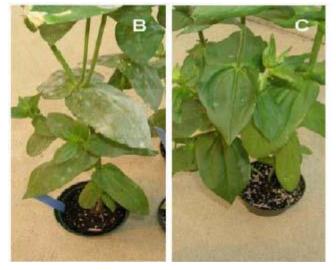


Figure 1. Area of inoculated zinnia leaf covered with powdery mildew with and without supplemental Si addition (A). Error bars represent +/- one standard deviation of the mean. Zinnia grown in soilless media without (B) and with (C) Si ~ 3 weeks after exposure to powdery mildew showed a reduction in symptomatic leaf surface area.

Сгор	Si Content	Crop	Si Content
	(mg/ kg)		(mg/ kg)
Zinnia elegans (Zinnia)	12,682 +/- 615	Begonia semperflorens (Begonia)	649 +/- 128
Chrysanthemum x morifolium	10,430 +/- 253	Coleus forskohlii (Coleus)	615
(Garden Mum)		-	
Cucumis sativas (Cucumber)	10,164 +/- 133	Coreopsis verticillata (Coreopsis)	891+/- 135
Verbena × hybrida (Verbena)	8,417 +/- 2080	Cyclamen persicum (Cyclamen)	613 +/- 256
Citrullus lanatus (Watermelon)	6,340+/- 154	Capsicum annuum (Bell pepper)	550 +/- 16
Helianthus annuus (Sunflower)	5,180 +/• 194	Pelargonium × hortorum (Zonal Geranium)	539 +/• 57
Cucurbita pepo (Pumpkin)	4,591+/- 605	Salvia splendens (Salvia)	529 +/- 98
Torenia fournieri (Torenia)	4,341 +/- 937	Antirrhinum majus (Snapdragon)	501 +/- 68
Dahlia × hybrida (Dahlia)	3,714 +/- 1,243	Rosa chinensis (Mini Rose)	478 +/- 165
Streptocarpella saxorum	3,704 +/- 289	Euphorbia pulcherrima	465 +/- 213
(Streptocarpella)		(Poinsettia)	
Echinacea purpurea (Purple	3,589+/- 472	Celosia argenta (Celosia)	246 +/- 17
Coneflower)			
Cucurbita pepo (Summer squash)	3,497+/- 135	Dianthus chenensis (Dianthus)	362 +/- 94
Rudbeckia hirta (Rudbeckia)	3,469 +/- 781	Hibiscus moscheutos (Hibiscus)	362 +/- 32
Phlox subulata (Phlox)	3,249 +/- 870	Tagetes erecta (Marigold)	330 +/- 39
Chrysanthemum × morifolium	2.641 +/- 342	Vinca × hybrida (Vinca or	330 +/- 36
(Florist Mum)		periwinkle)	
Impatiens × hawkeri (New Guinea	2,314 +/- 135	Gerbera jamesonii (Gerbera	266
Impatiens)		daisy)	
Abelmoschus esculentus (Okra)	2.130+/- 360	Petunia × hybrida (Petunia)	197 +/- 12
Saintpaulia ionanth (African violet)	2,041+/- 45	Primula polyantha (Primula)	182
Cucurbita pepo (Winter squash)	2.031 +/- 839	Spinacia oleracea (Spinach)	152+/- 22
Impatiens walleriana (Impatiens)	2,008 +/- 131	Beta vulgaris (Swiss chard)	152+/- 28
Arabidopsis thaliana	2,000 +/- 91	Viola × wittrockiana (Pansy)	126 +/- 32
(Arabidopsis)	-1000 11- 21	riola - minocritina (1 ansy)	1.00 11-02
Calibrachoa × hybrida	1,536 +/- 50	Allium cepa (Onion)	121+/- 14
	1,550 +/- 50	Annum cepa (Onton)	1417/- 14
(Calibrachoa)		37	102.1.1-
Lycopersicum esculentum (tomato)	747 +/- 61	Nicotiana sylvestris (Ornamental tobacco)	102+/- 17
Lantana camara (lantana)	8780 +/- 1719	Nicotiana tabacum (traditional tobacco)	290 +/- 39

Table 1. Silicon concentration in the leaves of many horticultural crops grown hydroponically with 1.0 mM Si. Plants were exposed for 3 weeks after establishment in a nonrecirculating hydroponic system. Values of Si are in newly matured leaves initiated after Si exposure.

SDA For more information, contact: Jonathan Frantz, jonathanfrantz319@gmail.com. Dr. Frantz now works for Dupont Pioneer.

Frantz, J., Locke, J.C., Sturtz, D.S., Leisner, S. 2010. Silicon in Ornamental Crops: Detection, Delivery, and Function. Silicio na Agricultura: Anais do V Simposio Brasileiro sobre Silicio Agricultura. Editor: Fabricio Rodriguez. pp.111-134.